Application of Genetic Algorithm on Observer-based D-stability Control for Discrete Multiple Time-delay Singularly Perturbation Systems

نویسندگان

  • Shin-Jang Pan
  • Jason S.-H. Tsai
  • Shing-Tai Pan
چکیده

This study proposes a Genetic Algorithm (GA) application for the observerbased controller design for discrete multiple time-delay, singularly perturbed systems. The corresponding slow and fast subsystems of the original system are first determined. The GA then derives the observer-based controllers for the D-stability of the slow and the fast subsystems, and a composite observer-based controller for the original system synthesized from the designed subsystems controllers. This study proposes a stability condition dependent upon the singular perturbation parameter ε, to guarantee the stability of the original system under the composite observer-based controller. This study finds the stability criteria of the original uncontrolled system by establishing the stability criteria for its corresponding slow and fast subsystems. If any of the criteria conditions is satisfied, this study uses the condition to find the upper bound ε∗ of ε and can guarantee the stability of the original system by examining the stability of corresponding subsystems, if ε ∈ [0, ε∗). Finally, an illustrative example demonstrates the efficiency of the proposed controller.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis of a Strongly Displacement Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method

In the present study, some perturbation methods are applied to Duffing equations having a displacement time-delayed variable to study the stability of such systems. Two approaches are considered to analyze Duffing oscillator having a strong delayed variable. The homotopy perturbation method is applied through the frequency analysis and nonlinear frequency is formulated as a function of all the ...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

T-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY

A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control

This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011